Nuprl Lemma : not-all-int_seg2
∀i,j:ℤ.  ∀[P,Q:{i..j-} ⟶ ℙ].  ((∀x:{i..j-}. (P[x] ∨ Q[x])) 
⇒ (¬(∀x:{i..j-}. P[x])) 
⇒ (∃x:{i..j-}. Q[x]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
le: A ≤ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
label: ...$L... t
, 
guard: {T}
, 
decidable: Dec(P)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
not: ¬A
, 
nat: ℕ
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
le_wf, 
iff_weakening_equal, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
subtype_rel_self, 
int_seg_subtype, 
subtype_rel_dep_function, 
lelt_wf, 
decidable__le, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
nat_wf, 
primrec-wf2, 
set_wf, 
exists_wf, 
uall_wf, 
subtract_wf, 
less_than_wf, 
or_wf, 
int_seg_wf, 
all_wf, 
not_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
unionElimination, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
addEquality, 
because_Cache, 
instantiate, 
setElimination, 
rename, 
intEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}i,j:\mBbbZ{}.
    \mforall{}[P,Q:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:\{i..j\msupminus{}\}.  (P[x]  \mvee{}  Q[x]))  {}\mRightarrow{}  (\mneg{}(\mforall{}x:\{i..j\msupminus{}\}.  P[x]))  {}\mRightarrow{}  (\mexists{}x:\{i..j\msupminus{}\}.  Q[x]))
Date html generated:
2016_10_21-AM-09_59_24
Last ObjectModification:
2016_09_26-PM-01_35_50
Theory : int_2
Home
Index