Nuprl Lemma : not-all-int_seg2

i,j:ℤ.  ∀[P,Q:{i..j-} ⟶ ℙ].  ((∀x:{i..j-}. (P[x] ∨ Q[x]))  (∀x:{i..j-}. P[x]))  (∃x:{i..j-}. Q[x]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q label: ...$L... t guard: {T} decidable: Dec(P) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} not: ¬A nat: or: P ∨ Q exists: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: member: t ∈ T implies:  Q uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  le_wf iff_weakening_equal int_formula_prop_eq_lemma intformeq_wf decidable__equal_int subtype_rel_self int_seg_subtype subtype_rel_dep_function lelt_wf decidable__le int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf intformle_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties nat_wf primrec-wf2 set_wf exists_wf uall_wf subtract_wf less_than_wf or_wf int_seg_wf all_wf not_wf
Rules used in proof :  equalitySymmetry equalityTransitivity dependent_set_memberEquality unionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination int_eqEquality dependent_pairFormation independent_isectElimination productElimination independent_functionElimination natural_numberEquality addEquality because_Cache instantiate setElimination rename intEquality universeEquality cumulativity functionEquality functionExtensionality applyEquality lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}i,j:\mBbbZ{}.
    \mforall{}[P,Q:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:\{i..j\msupminus{}\}.  (P[x]  \mvee{}  Q[x]))  {}\mRightarrow{}  (\mneg{}(\mforall{}x:\{i..j\msupminus{}\}.  P[x]))  {}\mRightarrow{}  (\mexists{}x:\{i..j\msupminus{}\}.  Q[x]))



Date html generated: 2016_10_21-AM-09_59_24
Last ObjectModification: 2016_09_26-PM-01_35_50

Theory : int_2


Home Index