Nuprl Lemma : not-inject

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀n:ℕ. ∀f:ℕn ⟶ T.  ∃i:ℕn. ∃j:ℕi. ((f i) (f j) ∈ T) supposing ¬Inj(ℕn;T;f)))


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A false: False nat: prop: inject: Inj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q lelt: i ≤ j < k le: A ≤ B less_than: a < b guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le int_formula_prop_eq_lemma intformeq_wf decidable__equal_int exists_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_properties lelt_wf decidable__lt decidable_wf nat_wf not_wf decidable__equal_int_seg decidable__implies decidable__all_int_seg equal_wf all_wf not-all-int_seg int_seg_wf inject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination natural_numberEquality setElimination rename hypothesis functionEquality applyEquality independent_functionElimination instantiate because_Cache isect_memberEquality productElimination universeEquality unionElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation equalitySymmetry cumulativity independent_isectElimination int_eqEquality intEquality voidEquality computeAll

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  T.    \mexists{}i:\mBbbN{}n.  \mexists{}j:\mBbbN{}i.  ((f  i)  =  (f  j))  supposing  \mneg{}Inj(\mBbbN{}n;T;f)))



Date html generated: 2016_05_14-AM-07_27_06
Last ObjectModification: 2016_01_14-PM-09_59_50

Theory : int_2


Home Index