Nuprl Lemma : not-inject
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀n:ℕ. ∀f:ℕn ⟶ T.  ∃i:ℕn. ∃j:ℕi. ((f i) = (f j) ∈ T) supposing ¬Inj(ℕn;T;f)))
Proof
Definitions occuring in Statement : 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
prop: ℙ
, 
inject: Inj(A;B;f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
exists_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
int_seg_properties, 
lelt_wf, 
decidable__lt, 
decidable_wf, 
nat_wf, 
not_wf, 
decidable__equal_int_seg, 
decidable__implies, 
decidable__all_int_seg, 
equal_wf, 
all_wf, 
not-all-int_seg, 
int_seg_wf, 
inject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
functionEquality, 
applyEquality, 
independent_functionElimination, 
instantiate, 
because_Cache, 
isect_memberEquality, 
productElimination, 
universeEquality, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalitySymmetry, 
cumulativity, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  T.    \mexists{}i:\mBbbN{}n.  \mexists{}j:\mBbbN{}i.  ((f  i)  =  (f  j))  supposing  \mneg{}Inj(\mBbbN{}n;T;f)))
Date html generated:
2016_05_14-AM-07_27_06
Last ObjectModification:
2016_01_14-PM-09_59_50
Theory : int_2
Home
Index