Nuprl Lemma : rem_invariant

[a,b:ℕ]. ∀[n:ℕ+].  ((a (b n) rem n) (a rem n) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: nat_plus: + nequal: a ≠ b ∈  subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q guard: {T} uiff: uiff(P;Q) subtract: m rev_implies:  Q iff: ⇐⇒ Q true: True squash: T
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf zero-mul add-zero nat_plus_properties intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_plus_wf nat_wf lt_to_le_rw mul_preserves_le nat_plus_subtype_nat int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf satisfiable-full-omega-tt add_functionality_wrt_le add-associates minus-one-mul add-commutes mul-distributes-right iff_weakening_equal le_wf rem_rec_case true_wf squash_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality remainderEquality because_Cache applyEquality baseClosed unionElimination productElimination addEquality computeAll multiplyEquality minusEquality imageMemberEquality dependent_set_memberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  +  (b  *  n)  rem  n)  =  (a  rem  n))



Date html generated: 2019_06_20-PM-01_14_58
Last ObjectModification: 2018_09_17-PM-05_47_10

Theory : int_2


Home Index