Nuprl Lemma : sum-partial-nat

[n:ℕ]. ∀[f:ℕn ⟶ partial(ℕ)].  (f[x] x < n) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) partial: partial(T) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q less_than: a < b true: True squash: T subtype_rel: A ⊆B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf partial_wf nat_wf sum-unroll nat-partial-nat false_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma top_wf add-wf-partial-nat int_seg_subtype int_seg_properties decidable__lt lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality because_Cache unionElimination lessCases sqequalAxiom imageMemberEquality baseClosed imageElimination productElimination applyEquality applyLambdaEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  partial(\mBbbN{})].    (\mSigma{}(f[x]  |  x  <  n)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2018_05_21-PM-00_27_55
Last ObjectModification: 2017_11_03-PM-02_26_53

Theory : int_2


Home Index