Nuprl Lemma : find_transitions_wf

[A:Type]. ∀[f:A ⟶ A ⟶ 𝔹]. ∀[L:A List].  find_transitions(f;L) ∈ Unit + ℤ × (Unit + ℤsupposing 1 < ||L||


Proof




Definitions occuring in Statement :  find_transitions: find_transitions(f;L) length: ||as|| list: List bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top find_transitions: find_transitions(f;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] has-value: (a)↓ bool: 𝔹 ge: i ≥  decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B true: True so_lambda: λ2x.t[x] so_apply: x[s] spreadn: spread4 isr: isr(x) ifthenelse: if then else fi  isl: isl(x) btrue: tt bfalse: ff band: p ∧b q unit: Unit it: bnot: ¬bb exists: x:A. B[x] sq_type: SQType(T) guard: {T} assert: b
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma spread_cons_lemma reduce_tl_cons_lemma value-type-has-value bool_wf union-value-type unit_wf2 hd_wf decidable__le length_wf false_wf not-ge-2 less-iff-le condition-implies-le add-associates minus-add add-swap add-commutes minus-one-mul minus-one-mul-top zero-add add_functionality_wrt_le le-add-cancel2 it_wf equal_wf less_than_wf list_wf pi2_wf list_accum'_wf null_nil_lemma eqtt_to_assert int-value-type bnot_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot bfalse_wf btrue_wf null_cons_lemma reduce_hd_cons_lemma and_wf isl_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality callbyvalueReduce independent_isectElimination because_Cache applyEquality functionExtensionality cumulativity natural_numberEquality independent_pairFormation lambdaFormation independent_functionElimination addEquality lambdaEquality intEquality minusEquality inlEquality unionEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality universeEquality productEquality setElimination rename sqleReflexivity equalityElimination dependent_pairFormation instantiate dependent_pairEquality independent_pairEquality inrEquality setEquality dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].
    find\_transitions(f;L)  \mmember{}  Unit  +  \mBbbZ{}  \mtimes{}  (Unit  +  \mBbbZ{})  supposing  1  <  ||L||



Date html generated: 2017_09_29-PM-05_49_47
Last ObjectModification: 2017_07_26-PM-01_38_42

Theory : list_0


Home Index