Nuprl Lemma : l_all_reduce

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  uiff((∀x∈L.↑P[x]);↑reduce(λx,y. (P[x] ∧b y);tt;L))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) reduce: reduce(f;k;as) list: List band: p ∧b q assert: b btrue: tt bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q all: x:A. B[x] top: Top assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_all: (∀x∈L.P[x]) int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T guard: {T} false: False true: True so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] it: nil: [] select: L[n] rev_uimplies: rev_uimplies(P;Q) cand: c∧ B or: P ∨ Q band: p ∧b q bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf bool_wf uiff_wf l_all_wf assert_wf l_member_wf reduce_wf band_wf btrue_wf list_wf reduce_nil_lemma reduce_cons_lemma assert_witness select_wf sq_stable__le int_seg_wf length_wf true_wf less_than_irreflexivity less_than_transitivity1 all_wf base_wf stuck-spread length_of_nil_lemma assert_of_band bool_cases_sqequal l_all_cons cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality hypothesis applyEquality setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation because_Cache productElimination independent_pairEquality equalityTransitivity equalitySymmetry functionExtensionality cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed imageElimination universeEquality axiomEquality independent_pairFormation productEquality unionElimination addLevel

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    uiff((\mforall{}x\mmember{}L.\muparrow{}P[x]);\muparrow{}reduce(\mlambda{}x,y.  (P[x]  \mwedge{}\msubb{}  y);tt;L))



Date html generated: 2019_06_20-PM-00_41_28
Last ObjectModification: 2018_08_24-PM-11_01_12

Theory : list_0


Home Index