Nuprl Lemma : reject_wf

[A:Type]. ∀[l:A List]. ∀[n:ℤ].  (l\[n] ∈ List)


Proof




Definitions occuring in Statement :  reject: as\[i] list: List uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q reject: as\[i] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: so_lambda(x,y,z.t[x; y; z]) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s1;s2;s3] nat: iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  le_int: i ≤j lt_int: i <j
Lemmas referenced :  decidable__lt list_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int tl_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf list_ind_wf nil_wf cons_wf not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add less-iff-le add_functionality_wrt_le add-associates le-add-cancel2 nat_wf decidable__le false_wf not-lt-2 minus-one-mul minus-one-mul-top le-add-cancel nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf not_wf subtract_wf not-ge-2 minus-minus add-swap decidable__int_equal int_subtype_base not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality isectElimination because_Cache cumulativity universeEquality lambdaFormation equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination lambdaEquality addEquality applyEquality voidEquality minusEquality hypothesis_subsumption setElimination rename dependent_set_memberEquality independent_pairFormation intWeakElimination

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].  \mforall{}[n:\mBbbZ{}].    (l\mbackslash{}[n]  \mmember{}  A  List)



Date html generated: 2017_04_14-AM-08_34_29
Last ObjectModification: 2017_02_27-PM-03_22_16

Theory : list_0


Home Index