Nuprl Lemma : select-is-bottom

[X:Top List]. ∀[i:ℕ].  X[i] ~ ⊥ supposing ||X|| ≤ i


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| list: List nat: bottom: uimplies: supposing a uall: [x:A]. B[x] top: Top le: A ≤ B sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] cons: [a b] colength: colength(L) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b exists: x:A. B[x] nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf length_wf top_wf nat_wf equal-wf-T-base colength_wf_list list_wf list-cases length_of_nil_lemma stuck-spread base_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base length_of_cons_lemma select-cons-tl non_neg_length length_wf_nat add-is-int-iff le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow mul-distributes mul-commutes mul-associates not-lt-2 minus-zero decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination baseClosed voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate cumulativity dependent_pairFormation sqequalIntensionalEquality baseApply closedConclusion multiplyEquality

Latex:
\mforall{}[X:Top  List].  \mforall{}[i:\mBbbN{}].    X[i]  \msim{}  \mbot{}  supposing  ||X||  \mleq{}  i



Date html generated: 2017_04_14-AM-08_37_04
Last ObjectModification: 2017_02_27-PM-03_29_13

Theory : list_0


Home Index