Nuprl Lemma : combine-combine-list-left

[T:Type]
  ∀f:T ⟶ T ⟶ T. ∀L:T List.
    (∀a:T. uiff(f[a;combine-list(x,y.f[x;y];L)] a ∈ T;(∀b∈L.f[a;b] a ∈ T))) supposing 
       (0 < ||L|| and 
       (∀x,y,z:T.  (f[x;f[y;z]] x ∈ ⇐⇒ (f[x;y] x ∈ T) ∧ (f[x;z] x ∈ T))))


Proof




Definitions occuring in Statement :  combine-list: combine-list(x,y.f[x; y];L) l_all: (∀x∈L.P[x]) length: ||as|| list: List less_than: a < b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top combine-list: combine-list(x,y.f[x; y];L) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: so_apply: x[s] implies:  Q uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q l_all: (∀x∈L.P[x]) cand: c∧ B guard: {T}
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma list_induction all_wf uiff_wf equal_wf list_accum_wf l_all_wf cons_wf l_member_wf list_wf list_accum_nil_lemma l_all_single int_seg_wf length_wf nil_wf list_accum_cons_lemma iff_weakening_uiff less_than_wf iff_wf combine-list_wf l_all_cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality lambdaEquality cumulativity because_Cache applyEquality functionExtensionality setElimination rename setEquality independent_functionElimination independent_pairFormation addLevel allFunctionality independent_isectElimination axiomEquality natural_numberEquality independent_pairEquality equalityTransitivity equalitySymmetry productEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}L:T  List.
        (\mforall{}a:T.  uiff(f[a;combine-list(x,y.f[x;y];L)]  =  a;(\mforall{}b\mmember{}L.f[a;b]  =  a)))  supposing 
              (0  <  ||L||  and 
              (\mforall{}x,y,z:T.    (f[x;f[y;z]]  =  x  \mLeftarrow{}{}\mRightarrow{}  (f[x;y]  =  x)  \mwedge{}  (f[x;z]  =  x))))



Date html generated: 2017_04_17-AM-07_39_13
Last ObjectModification: 2017_02_27-PM-04_13_14

Theory : list_1


Home Index