Nuprl Lemma : combine-combine-list-left
∀[T:Type]
  ∀f:T ⟶ T ⟶ T. ∀L:T List.
    (∀a:T. uiff(f[a;combine-list(x,y.f[x;y];L)] = a ∈ T;(∀b∈L.f[a;b] = a ∈ T))) supposing 
       (0 < ||L|| and 
       (∀x,y,z:T.  (f[x;f[y;z]] = x ∈ T 
⇐⇒ (f[x;y] = x ∈ T) ∧ (f[x;z] = x ∈ T))))
Proof
Definitions occuring in Statement : 
combine-list: combine-list(x,y.f[x; y];L)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
cons: [a / b]
, 
top: Top
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
l_all: (∀x∈L.P[x])
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
list_induction, 
all_wf, 
uiff_wf, 
equal_wf, 
list_accum_wf, 
l_all_wf, 
cons_wf, 
l_member_wf, 
list_wf, 
list_accum_nil_lemma, 
l_all_single, 
int_seg_wf, 
length_wf, 
nil_wf, 
list_accum_cons_lemma, 
iff_weakening_uiff, 
less_than_wf, 
iff_wf, 
combine-list_wf, 
l_all_cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
lambdaEquality, 
cumulativity, 
because_Cache, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
independent_pairFormation, 
addLevel, 
allFunctionality, 
independent_isectElimination, 
axiomEquality, 
natural_numberEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}L:T  List.
        (\mforall{}a:T.  uiff(f[a;combine-list(x,y.f[x;y];L)]  =  a;(\mforall{}b\mmember{}L.f[a;b]  =  a)))  supposing 
              (0  <  ||L||  and 
              (\mforall{}x,y,z:T.    (f[x;f[y;z]]  =  x  \mLeftarrow{}{}\mRightarrow{}  (f[x;y]  =  x)  \mwedge{}  (f[x;z]  =  x))))
Date html generated:
2017_04_17-AM-07_39_13
Last ObjectModification:
2017_02_27-PM-04_13_14
Theory : list_1
Home
Index