Nuprl Lemma : decidable__list-closed2-ext

[T:Type]. ∀L:T List. ∀f:T ⟶ (T List). ∀d:EqDecider(T).  Dec(list-closed(T;L;f))


Proof




Definitions occuring in Statement :  list-closed: list-closed(T;L;f) list: List deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T deq-witness: deq-witness(eq) ifthenelse: if then else fi  list_ind: list_ind bottom: genrec-ap: genrec-ap spreadn: spread3 decidable__list-closed2 decidable__list-closed decidable-equal-deq decidable__l_all decidable__l_member list_induction decidable_functionality nil_member decidable__false cons_member decidable__or iff_preserves_decidability any: any x decidable__assert uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  decidable__list-closed2 lifting-strict-decide istype-void strict4-decide decidable__list-closed decidable-equal-deq decidable__l_all decidable__l_member list_induction decidable_functionality nil_member decidable__false cons_member decidable__or iff_preserves_decidability decidable__assert
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}f:T  {}\mrightarrow{}  (T  List).  \mforall{}d:EqDecider(T).    Dec(list-closed(T;L;f))



Date html generated: 2019_06_20-PM-01_51_21
Last ObjectModification: 2019_05_13-PM-03_38_11

Theory : list_1


Home Index