Nuprl Lemma : hd-map-spread

[f:Top]. ∀[L:Top List].  (hd(map(λx.let a,b in f[a;b];L)) let a,b hd(L) in f[a;b])


Proof




Definitions occuring in Statement :  hd: hd(l) map: map(f;as) list: List uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] lambda: λx.A[x] spread: spread def sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] or: P ∨ Q cons: [a b] select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + less_than: a < b squash: T true: True guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  select0 list_wf top_wf list-cases product_subtype_list map_nil_lemma stuck-spread base_wf strictness-spread select-map cons_wf length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf lelt_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom hypothesisEquality because_Cache dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination baseClosed independent_isectElimination lambdaFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll independent_functionElimination addEquality

Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].    (hd(map(\mlambda{}x.let  a,b  =  x  in  f[a;b];L))  \msim{}  let  a,b  =  hd(L)  in  f[a;b])



Date html generated: 2017_04_14-AM-09_24_45
Last ObjectModification: 2017_02_27-PM-03_59_16

Theory : list_1


Home Index