Nuprl Lemma : l_all_exists_injection
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ]. ∀[P:B ⟶ ℙ].
  ∀L:A List
    ((∀x∈L.∃y:B. (R[x;y] ∧ P[y])) 
⇒ (∃f:ℕ||L|| ⟶ {y:B| P[y]} . Inj(ℕ||L||;{y:B| P[y]} f))) supposing 
       (no_repeats(A;L) and 
       (∀x1,x2:A. ∀y:B.  (R[x1;y] 
⇒ R[x2;y] 
⇒ (x1 = x2 ∈ A))))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
no_repeats: no_repeats(T;l)
, 
length: ||as||
, 
list: T List
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
l_all: (∀x∈L.P[x])
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
pi1: fst(t)
, 
inject: Inj(A;B;f)
, 
no_repeats: no_repeats(T;l)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
no_repeats_witness, 
l_all_wf, 
exists_wf, 
l_member_wf, 
no_repeats_wf, 
all_wf, 
equal_wf, 
list_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
inject_wf, 
decidable__equal_int_seg, 
int_seg_subtype_nat, 
false_wf, 
nat_properties, 
set_wf, 
le_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
cumulativity, 
universeEquality, 
because_Cache, 
rename, 
extract_by_obid, 
isectElimination, 
independent_functionElimination, 
productEquality, 
setElimination, 
setEquality, 
functionEquality, 
promote_hyp, 
productElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:A  List
        ((\mforall{}x\mmember{}L.\mexists{}y:B.  (R[x;y]  \mwedge{}  P[y]))  {}\mRightarrow{}  (\mexists{}f:\mBbbN{}||L||  {}\mrightarrow{}  \{y:B|  P[y]\}  .  Inj(\mBbbN{}||L||;\{y:B|  P[y]\}  ;f)))  suppos\000Cing 
              (no\_repeats(A;L)  and 
              (\mforall{}x1,x2:A.  \mforall{}y:B.    (R[x1;y]  {}\mRightarrow{}  R[x2;y]  {}\mRightarrow{}  (x1  =  x2))))
Date html generated:
2016_10_21-AM-10_27_12
Last ObjectModification:
2016_07_12-AM-05_40_33
Theory : list_1
Home
Index