Nuprl Lemma : l_all_exists_injection

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ]. ∀[P:B ⟶ ℙ].
  ∀L:A List
    ((∀x∈L.∃y:B. (R[x;y] ∧ P[y]))  (∃f:ℕ||L|| ⟶ {y:B| P[y]} Inj(ℕ||L||;{y:B| P[y]} ;f))) supposing 
       (no_repeats(A;L) and 
       (∀x1,x2:A. ∀y:B.  (R[x1;y]  R[x2;y]  (x1 x2 ∈ A))))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) length: ||as|| list: List inject: Inj(A;B;f) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q so_apply: x[s1;s2] subtype_rel: A ⊆B prop: l_all: (∀x∈L.P[x]) so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] exists: x:A. B[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T pi1: fst(t) inject: Inj(A;B;f) no_repeats: no_repeats(T;l) le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥ 
Lemmas referenced :  no_repeats_witness l_all_wf exists_wf l_member_wf no_repeats_wf all_wf equal_wf list_wf int_seg_wf length_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma inject_wf decidable__equal_int_seg int_seg_subtype_nat false_wf nat_properties set_wf le_wf intformeq_wf int_formula_prop_eq_lemma lelt_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis applyEquality functionExtensionality cumulativity universeEquality because_Cache rename extract_by_obid isectElimination independent_functionElimination productEquality setElimination setEquality functionEquality promote_hyp productElimination dependent_set_memberEquality natural_numberEquality independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination equalityTransitivity equalitySymmetry hyp_replacement

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:A  List
        ((\mforall{}x\mmember{}L.\mexists{}y:B.  (R[x;y]  \mwedge{}  P[y]))  {}\mRightarrow{}  (\mexists{}f:\mBbbN{}||L||  {}\mrightarrow{}  \{y:B|  P[y]\}  .  Inj(\mBbbN{}||L||;\{y:B|  P[y]\}  ;f)))  suppos\000Cing 
              (no\_repeats(A;L)  and 
              (\mforall{}x1,x2:A.  \mforall{}y:B.    (R[x1;y]  {}\mRightarrow{}  R[x2;y]  {}\mRightarrow{}  (x1  =  x2))))



Date html generated: 2016_10_21-AM-10_27_12
Last ObjectModification: 2016_07_12-AM-05_40_33

Theory : list_1


Home Index