Nuprl Lemma : l_before_append_front

[T:Type]. ∀L1,L2:T List. ∀x,y:T.  before y ∈ L1 L2  before y ∈ L1 supposing ¬(y ∈ L2)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: top: Top assert: b ifthenelse: if then else fi  bfalse: ff last: last(L) select: L[n] cons: [a b] subtract: m length: ||as|| list_ind: list_ind nil: [] it:
Lemmas referenced :  l_member_wf sublist_append_front cons_wf nil_wf null_cons_lemma last_wf not_wf assert_wf null_wf sublist_wf append_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination hypothesis rename because_Cache independent_isectElimination isect_memberEquality voidEquality independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x,y:T.    x  before  y  \mmember{}  L1  @  L2  {}\mRightarrow{}  x  before  y  \mmember{}  L1  supposing  \mneg{}(y  \mmember{}  L2)



Date html generated: 2016_05_14-AM-07_44_54
Last ObjectModification: 2015_12_26-PM-02_53_05

Theory : list_1


Home Index