Nuprl Lemma : sublist_append_front

[T:Type]. ∀L,L1,L2:T List.  L ⊆ L1 L2  L ⊆ L1 supposing ¬(last(L) ∈ L2) supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 last: last(L) l_member: (x ∈ l) null: null(as) append: as bs list: List assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q top: Top sublist: L1 ⊆ L2 exists: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B l_member: (x ∈ l) nat: cand: c∧ B ge: i ≥  le: A ≤ B last: last(L) true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  l_member_wf last_wf not_wf assert_wf null_wf decidable__assert sublist_wf append_wf isect_wf list_wf assert_of_null nil-sublist non_nil_length not_functionality_wrt_uiff equal-wf-T-base decidable__lt int_seg_wf length_wf subtract_wf length-append decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf lelt_wf le_wf non_neg_length length_append subtype_rel_list top_wf length_wf_nat nat_properties int_seg_properties itermAdd_wf int_term_value_add_lemma less_than_wf equal_wf select_wf squash_wf true_wf select_append_back subtype_rel_self iff_weakening_equal add-is-int-iff false_wf increasing_implies_le nat_wf select_append_front increasing_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality lambdaEquality dependent_functionElimination voidElimination extract_by_obid independent_isectElimination hypothesis equalityTransitivity equalitySymmetry rename unionElimination universeEquality productElimination voidEquality hyp_replacement applyLambdaEquality because_Cache baseClosed independent_functionElimination applyEquality functionExtensionality natural_numberEquality cumulativity dependent_set_memberEquality independent_pairFormation imageElimination approximateComputation dependent_pairFormation int_eqEquality intEquality setElimination productEquality imageMemberEquality instantiate addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    L  \msubseteq{}  L1  @  L2  {}\mRightarrow{}  L  \msubseteq{}  L1  supposing  \mneg{}(last(L)  \mmember{}  L2)  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2019_06_20-PM-01_22_51
Last ObjectModification: 2018_09_17-PM-06_04_14

Theory : list_1


Home Index