Nuprl Lemma : sublist_append_front
∀[T:Type]. ∀L,L1,L2:T List.  L ⊆ L1 @ L2 
⇒ L ⊆ L1 supposing ¬(last(L) ∈ L2) supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
last: last(L)
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
append: as @ bs
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
top: Top
, 
sublist: L1 ⊆ L2
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
subtype_rel: A ⊆r B
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
last: last(L)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
l_member_wf, 
last_wf, 
not_wf, 
assert_wf, 
null_wf, 
decidable__assert, 
sublist_wf, 
append_wf, 
isect_wf, 
list_wf, 
assert_of_null, 
nil-sublist, 
non_nil_length, 
not_functionality_wrt_uiff, 
equal-wf-T-base, 
decidable__lt, 
int_seg_wf, 
length_wf, 
subtract_wf, 
length-append, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
lelt_wf, 
le_wf, 
non_neg_length, 
length_append, 
subtype_rel_list, 
top_wf, 
length_wf_nat, 
nat_properties, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
less_than_wf, 
equal_wf, 
select_wf, 
squash_wf, 
true_wf, 
select_append_back, 
subtype_rel_self, 
iff_weakening_equal, 
add-is-int-iff, 
false_wf, 
increasing_implies_le, 
nat_wf, 
select_append_front, 
increasing_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
extract_by_obid, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
unionElimination, 
universeEquality, 
productElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
because_Cache, 
baseClosed, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
cumulativity, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
setElimination, 
productEquality, 
imageMemberEquality, 
instantiate, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    L  \msubseteq{}  L1  @  L2  {}\mRightarrow{}  L  \msubseteq{}  L1  supposing  \mneg{}(last(L)  \mmember{}  L2)  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2019_06_20-PM-01_22_51
Last ObjectModification:
2018_09_17-PM-06_04_14
Theory : list_1
Home
Index