Nuprl Lemma : last_induction
∀[T:Type]. ∀[Q:(T List) ⟶ ℙ]. (Q[[]]
⇒ (∀ys:T List. ∀y:T. (Q[ys]
⇒ Q[ys @ [y]]))
⇒ {∀zs:T List. Q[zs]})
Proof
Definitions occuring in Statement :
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat: ℕ
,
ge: i ≥ j
,
less_than: a < b
,
squash: ↓T
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
cons: [a / b]
,
bfalse: ff
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
int_seg_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
int_seg_wf,
decidable__equal_int,
subtract_wf,
int_seg_subtype,
false_wf,
set_wf,
lelt_wf,
decidable__le,
intformnot_wf,
itermSubtract_wf,
intformeq_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_formula_prop_eq_lemma,
le_wf,
length_wf,
non_neg_length,
nat_properties,
decidable__lt,
less_than_wf,
decidable__assert,
null_wf,
all_wf,
list_wf,
primrec-wf2,
nat_wf,
itermAdd_wf,
int_term_value_add_lemma,
length_wf_nat,
append_wf,
cons_wf,
nil_wf,
list-cases,
null_nil_lemma,
length_of_nil_lemma,
product_subtype_list,
null_cons_lemma,
length_of_cons_lemma,
last_lemma,
last_wf,
squash_wf,
true_wf,
length_append,
subtype_rel_list,
top_wf,
iff_weakening_equal,
length-singleton
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
natural_numberEquality,
because_Cache,
hypothesisEquality,
hypothesis,
setElimination,
rename,
productElimination,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
unionElimination,
addLevel,
applyEquality,
equalityTransitivity,
equalitySymmetry,
levelHypothesis,
hypothesis_subsumption,
dependent_set_memberEquality,
cumulativity,
imageElimination,
independent_functionElimination,
functionEquality,
functionExtensionality,
addEquality,
universeEquality,
promote_hyp,
imageMemberEquality,
baseClosed,
hyp_replacement,
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type]. \mforall{}[Q:(T List) {}\mrightarrow{} \mBbbP{}].
(Q[[]] {}\mRightarrow{} (\mforall{}ys:T List. \mforall{}y:T. (Q[ys] {}\mRightarrow{} Q[ys @ [y]])) {}\mRightarrow{} \{\mforall{}zs:T List. Q[zs]\})
Date html generated:
2016_10_21-AM-10_08_40
Last ObjectModification:
2016_07_12-AM-05_28_17
Theory : list_1
Home
Index