Nuprl Lemma : last_l_interval

[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕi].  (last(l_interval(l;j;i)) l[i 1] ∈ T)


Proof




Definitions occuring in Statement :  l_interval: l_interval(l;j;i) last: last(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T last: last(L) squash: T prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top le: A ≤ B less_than: a < b true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) subtract: m
Lemmas referenced :  equal_wf squash_wf true_wf select_l_interval int_seg_properties length_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf subtract_wf l_interval_wf le_wf length_l_interval iff_weakening_equal decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma less_than_wf select_wf subtype_base_sq int_subtype_base int_seg_wf list_wf add-associates minus-one-mul add-swap add-mul-special add-commutes zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache setElimination rename dependent_set_memberEquality productElimination independent_pairFormation natural_numberEquality cumulativity dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll imageMemberEquality baseClosed independent_functionElimination universeEquality instantiate axiomEquality multiplyEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].  \mforall{}[j:\mBbbN{}i].    (last(l\_interval(l;j;i))  =  l[i  -  1])



Date html generated: 2017_04_17-AM-07_42_56
Last ObjectModification: 2017_02_27-PM-04_15_21

Theory : list_1


Home Index