Nuprl Lemma : last_mklist

T:Type. ∀f:ℕ ⟶ T. ∀n:ℕ+.  (last(mklist(n;f)) (f (n 1)) ∈ T)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) last: last(L) nat_plus: + nat: all: x:A. B[x] apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T last: last(L) uall: [x:A]. B[x] top: Top subtype_rel: A ⊆B squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nat: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_plus_wf nat_wf mklist_length nat_plus_subtype_nat equal_wf squash_wf true_wf mklist_select subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid functionEquality cumulativity hypothesisEquality universeEquality sqequalRule sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_set_memberEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll functionExtensionality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}\msupplus{}.    (last(mklist(n;f))  =  (f  (n  -  1)))



Date html generated: 2017_04_17-AM-07_59_51
Last ObjectModification: 2017_02_27-PM-04_30_22

Theory : list_1


Home Index