Nuprl Lemma : length2-decomp

[T:Type]. ∀L:T List. ∃a,b:T. ∃L':T List. (L (L' [a; b]) ∈ (T List)) supposing ||L|| ≥ 


Proof




Definitions occuring in Statement :  length: ||as|| append: as bs cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] exists: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T ge: i ≥  le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] squash: T int_iseg: {i...j} cand: c∧ B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) cons: [a b] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  less_than'_wf length_wf append_firstn_lastn_sq subtype_rel_list top_wf subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf ge_wf list_wf equal_wf squash_wf true_wf length_nth_tl le_wf iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma nth_tl_wf list-cases length_of_nil_lemma subtype_base_sq int_subtype_base false_wf equal-wf-base product_subtype_list length_of_cons_lemma cons_wf nil_wf exists_wf non_neg_length equal-wf-T-base firstn_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination extract_by_obid isectElimination cumulativity hypothesis natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry rename applyEquality independent_isectElimination isect_memberEquality voidEquality because_Cache dependent_set_memberEquality independent_pairFormation unionElimination dependent_pairFormation int_eqEquality intEquality computeAll addEquality universeEquality imageElimination productEquality imageMemberEquality baseClosed independent_functionElimination addLevel instantiate levelHypothesis promote_hyp hypothesis_subsumption

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}a,b:T.  \mexists{}L':T  List.  (L  =  (L'  @  [a;  b]))  supposing  ||L||  \mgeq{}  2 



Date html generated: 2017_04_17-AM-07_52_20
Last ObjectModification: 2017_02_27-PM-04_25_17

Theory : list_1


Home Index