Nuprl Lemma : length2-decomp
∀[T:Type]. ∀L:T List. ∃a,b:T. ∃L':T List. (L = (L' @ [a; b]) ∈ (T List)) supposing ||L|| ≥ 2 
Proof
Definitions occuring in Statement : 
length: ||as||
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
cons: [a / b]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
less_than'_wf, 
length_wf, 
append_firstn_lastn_sq, 
subtype_rel_list, 
top_wf, 
subtract_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
ge_wf, 
list_wf, 
equal_wf, 
squash_wf, 
true_wf, 
length_nth_tl, 
le_wf, 
iff_weakening_equal, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nth_tl_wf, 
list-cases, 
length_of_nil_lemma, 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
equal-wf-base, 
product_subtype_list, 
length_of_cons_lemma, 
cons_wf, 
nil_wf, 
exists_wf, 
non_neg_length, 
equal-wf-T-base, 
firstn_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
applyEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
because_Cache, 
dependent_set_memberEquality, 
independent_pairFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
universeEquality, 
imageElimination, 
productEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
addLevel, 
instantiate, 
levelHypothesis, 
promote_hyp, 
hypothesis_subsumption
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}a,b:T.  \mexists{}L':T  List.  (L  =  (L'  @  [a;  b]))  supposing  ||L||  \mgeq{}  2 
Date html generated:
2017_04_17-AM-07_52_20
Last ObjectModification:
2017_02_27-PM-04_25_17
Theory : list_1
Home
Index