Nuprl Lemma : list_accum2_wf

[A,B,T:Type].
  ∀[f:T ⟶ A ⟶ B ⟶ T]. ∀[g:T ⟶ A ⟶ T]. ∀[h:T ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List]. ∀[y:T].
    (list_accum2(x,a,b.f[x;a;b];x,a.g[x;a];x,b.h[x;b];y;as;bs) ∈ T) 
  supposing value-type(T)


Proof




Definitions occuring in Statement :  list_accum2: list_accum2(x,a,b.f[x; a; b];x,a.g[x; a];x,b.h[x; b];y;as;bs) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q list_accum2: list_accum2(x,a,b.f[x; a; b];x,a.g[x; a];x,b.h[x; b];y;as;bs) nil: [] it: cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) has-value: (a)↓ decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b) so_apply: x[s1;s2;s3]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base value-type-has-value intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int nil_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination baseClosed instantiate callbyvalueReduce functionExtensionality applyLambdaEquality dependent_set_memberEquality addEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[A,B,T:Type].
    \mforall{}[f:T  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[g:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T].  \mforall{}[h:T  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].  \mforall{}[y:T].
        (list\_accum2(x,a,b.f[x;a;b];x,a.g[x;a];x,b.h[x;b];y;as;bs)  \mmember{}  T) 
    supposing  value-type(T)



Date html generated: 2017_09_29-PM-05_58_39
Last ObjectModification: 2017_04_24-PM-04_46_41

Theory : list_1


Home Index