Nuprl Lemma : list_decomp_rev_wf

[T:Type]. ∀[l:T List].  list_decomp_rev{i:l}(l) ∈ {p:T × (T List)| ((snd(p)) [fst(p)]) ∈ (T List)}  supposing 0 <\000C ||l||


Proof




Definitions occuring in Statement :  list_decomp_rev: list_decomp_rev{i:l}(l) length: ||as|| append: as bs cons: [a b] nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a list_decomp_rev: list_decomp_rev{i:l}(l) so_lambda: λ2x.t[x] prop: so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q exists: x:A. B[x] pi2: snd(t) pi1: fst(t) and: P ∧ Q squash: T true: True
Lemmas referenced :  list_decomp_reverse uall_wf all_wf list_wf isect_wf less_than_wf length_wf exists_wf equal_wf append_wf cons_wf nil_wf uimplies_subtype and_wf squash_wf true_wf pi2_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination universeEquality sqequalRule lambdaEquality cumulativity hypothesisEquality natural_numberEquality because_Cache applyEquality lambdaFormation equalityTransitivity equalitySymmetry isectEquality functionEquality independent_isectElimination productElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename imageElimination imageMemberEquality baseClosed independent_pairEquality dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    list\_decomp\_rev\{i:l\}(l)  \mmember{}  \{p:T  \mtimes{}  (T  List)|  l  =  ((snd(p))  @  [fst(p)])\}    supp\000Cosing  0  <  ||l||



Date html generated: 2017_04_17-AM-08_43_26
Last ObjectModification: 2017_02_27-PM-05_02_27

Theory : list_1


Home Index