Nuprl Lemma : list_decomp_reverse
∀[T:Type]. ∀L:T List. ∃x:T. ∃L':T List. (L = (L' @ [x]) ∈ (T List)) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
length: ||as||
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
top: Top
, 
or: P ∨ Q
, 
cons: [a / b]
, 
exists: ∃x:A. B[x]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
true: True
Lemmas referenced : 
list_induction, 
isect_wf, 
less_than_wf, 
length_wf, 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
cons_wf, 
nil_wf, 
length_of_nil_lemma, 
member-less_than, 
length_of_cons_lemma, 
list-cases, 
product_subtype_list, 
list_ind_nil_lemma, 
non_neg_length, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
list_ind_cons_lemma, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
because_Cache, 
independent_isectElimination, 
rename, 
Error :universeIsType, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
addEquality, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_pairFormation, 
approximateComputation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}x:T.  \mexists{}L':T  List.  (L  =  (L'  @  [x]))  supposing  0  <  ||L||
Date html generated:
2019_06_20-PM-01_45_27
Last ObjectModification:
2018_09_26-PM-02_54_49
Theory : list_1
Home
Index