Nuprl Lemma : maximal-in-list

[A:Type]. ∀f:A ⟶ ℤ. ∀L:A List.  (∃a∈L. (∀x∈L.(f x) ≤ (f a))) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B sq_type: SQType(T)
Lemmas referenced :  list-max-property member-less_than length_wf istype-less_than list_wf istype-int istype-universe list-max_wf l_member_wf int_subtype_base l_all_wf le_wf l_exists_iff subtype_base_sq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaFormation_alt,  dependent_functionElimination natural_numberEquality independent_isectElimination rename Error :universeIsType,  Error :functionIsType,  instantiate universeEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  productElimination Error :productIsType,  setElimination Error :equalityIstype,  because_Cache sqequalBase equalitySymmetry Error :setIsType,  equalityTransitivity independent_functionElimination Error :dependent_pairFormation_alt,  independent_pairFormation cumulativity intEquality

Latex:
\mforall{}[A:Type].  \mforall{}f:A  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:A  List.    (\mexists{}a\mmember{}L.  (\mforall{}x\mmember{}L.(f  x)  \mleq{}  (f  a)))  supposing  0  <  ||L||



Date html generated: 2019_06_20-PM-01_30_56
Last ObjectModification: 2018_11_28-PM-03_24_31

Theory : list_1


Home Index