Nuprl Lemma : member-insert-by

[T:Type]
  ∀eq,r:T ⟶ T ⟶ 𝔹.
    ∀x:T. ∀L:T List. ∀z:T.  ((z ∈ insert-by(eq;r;x;L)) ⇐⇒ (z x ∈ T) ∨ (z ∈ L)) 
    supposing ∀a,b:T.  (↑(eq b) ⇐⇒ b ∈ T)


Proof




Definitions occuring in Statement :  insert-by: insert-by(eq;r;x;l) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] insert-by: insert-by(eq;r;x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q false: False guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  assert_wf assert_witness equal_wf list_induction all_wf iff_wf l_member_wf insert-by_wf or_wf list_wf list_ind_nil_lemma false_wf nil_member nil_wf member_singleton cons_wf list_ind_cons_lemma bool_wf cons_member equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality axiomEquality hypothesis extract_by_obid isectElimination applyEquality functionExtensionality cumulativity independent_functionElimination rename because_Cache isect_memberEquality voidElimination voidEquality independent_pairFormation inlFormation unionElimination addLevel impliesFunctionality orFunctionality functionEquality universeEquality equalityTransitivity equalitySymmetry inrFormation baseClosed equalityElimination independent_isectElimination hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq,r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}.
        \mforall{}x:T.  \mforall{}L:T  List.  \mforall{}z:T.    ((z  \mmember{}  insert-by(eq;r;x;L))  \mLeftarrow{}{}\mRightarrow{}  (z  =  x)  \mvee{}  (z  \mmember{}  L)) 
        supposing  \mforall{}a,b:T.    (\muparrow{}(eq  a  b)  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2017_04_17-AM-08_26_08
Last ObjectModification: 2017_02_27-PM-04_48_20

Theory : list_1


Home Index