Nuprl Lemma : member_upto

n,i:ℕ.  ((i ∈ upto(n)) ⇐⇒ i < n)


Proof




Definitions occuring in Statement :  upto: upto(n) l_member: (x ∈ l) nat: less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a prop: satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B less_than': less_than'(a;b) rev_implies:  Q
Lemmas referenced :  length_upto select_upto nat_properties decidable__lt select_wf int_seg_wf upto_wf le_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformnot_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf l_member_wf nat_wf subtype_rel_list int_seg_subtype_nat false_wf decidable__equal_int decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma less_than_wf length_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut sqequalHypSubstitution productElimination thin sqequalRule introduction extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination unionElimination because_Cache independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality productEquality

Latex:
\mforall{}n,i:\mBbbN{}.    ((i  \mmember{}  upto(n))  \mLeftarrow{}{}\mRightarrow{}  i  <  n)



Date html generated: 2017_04_17-AM-07_57_58
Last ObjectModification: 2017_02_27-PM-04_29_40

Theory : list_1


Home Index