Nuprl Lemma : no_repeats_map_uiff

[T:Type]. ∀[L:T List]. ∀[A:Type]. ∀[f:{x:T| (x ∈ L)}  ⟶ A].
  uiff(no_repeats(A;map(f;L));no_repeats(T;L)) supposing Inj({x:T| (x ∈ L)} ;A;f)


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) l_member: (x ∈ l) map: map(f;as) list: List inject: Inj(A;B;f) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mapl: mapl(f;l) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: no_repeats: no_repeats(T;l) top: Top not: ¬A false: False nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B squash: T
Lemmas referenced :  no_repeats_witness no_repeats_wf mapl_wf l_member_wf no_repeats_map inject_wf list_wf length-map equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf not_wf nat_wf less_than_wf length_wf subtype_rel_list top_wf lelt_wf list-subtype select-map
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis cumulativity functionExtensionality applyEquality setEquality independent_isectElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality voidElimination voidEquality lambdaEquality dependent_functionElimination setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll dependent_set_memberEquality lambdaFormation applyLambdaEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[A:Type].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  A].
    uiff(no\_repeats(A;map(f;L));no\_repeats(T;L))  supposing  Inj(\{x:T|  (x  \mmember{}  L)\}  ;A;f)



Date html generated: 2017_04_17-AM-08_41_54
Last ObjectModification: 2017_02_27-PM-04_59_24

Theory : list_1


Home Index