Nuprl Lemma : no_repeats_map_uiff
∀[T:Type]. ∀[L:T List]. ∀[A:Type]. ∀[f:{x:T| (x ∈ L)}  ⟶ A].
  uiff(no_repeats(A;map(f;L));no_repeats(T;L)) supposing Inj({x:T| (x ∈ L)} A;f)
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
inject: Inj(A;B;f)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
mapl: mapl(f;l)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
no_repeats: no_repeats(T;l)
, 
top: Top
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
squash: ↓T
Lemmas referenced : 
no_repeats_witness, 
no_repeats_wf, 
mapl_wf, 
l_member_wf, 
no_repeats_map, 
inject_wf, 
list_wf, 
length-map, 
equal_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
length_wf, 
subtype_rel_list, 
top_wf, 
lelt_wf, 
list-subtype, 
select-map
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
functionExtensionality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
lambdaFormation, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[A:Type].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  A].
    uiff(no\_repeats(A;map(f;L));no\_repeats(T;L))  supposing  Inj(\{x:T|  (x  \mmember{}  L)\}  ;A;f)
Date html generated:
2017_04_17-AM-08_41_54
Last ObjectModification:
2017_02_27-PM-04_59_24
Theory : list_1
Home
Index