Nuprl Lemma : pairwise-sublist

[T:Type]. ∀L1,L2:T List.  ∀[P:T ⟶ T ⟶ ℙ']. (L1 ⊆ L2  (∀x,y∈L2.  P[x;y])  (∀x,y∈L1.  P[x;y]))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sublist: L1 ⊆ L2 exists: x:A. B[x] pairwise: (∀x,y∈L.  P[x; y]) and: P ∧ Q squash: T int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top le: A ≤ B subtype_rel: A ⊆B ge: i ≥  nat: true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  pairwise_wf2 sublist_wf list_wf equal_wf squash_wf true_wf int_seg_properties length_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf select_wf int_seg_wf non_neg_length decidable__le length_wf_nat nat_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma iff_weakening_equal increasing_implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality productElimination imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename dependent_set_memberEquality independent_pairFormation natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache applyLambdaEquality independent_functionElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'].  (L1  \msubseteq{}  L2  {}\mRightarrow{}  (\mforall{}x,y\mmember{}L2.    P[x;y])  {}\mRightarrow{}  (\mforall{}x,y\mmember{}L1.    P[x;y]))



Date html generated: 2017_04_17-AM-07_44_32
Last ObjectModification: 2017_02_27-PM-04_16_58

Theory : list_1


Home Index