Nuprl Lemma : permute_list-compose

[T:Type]. ∀[L:T List]. ∀[f,g:ℕ||L|| ⟶ ℕ||L||].  ((L g) ((L f) g) ∈ (T List))


Proof




Definitions occuring in Statement :  permute_list: (L f) length: ||as|| list: List compose: g int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k true: True compose: g ge: i ≥  guard: {T} squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_extensionality permute_list_wf compose_wf int_seg_wf length_wf subtype_rel_dep_function int_seg_subtype false_wf permute_list_length decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf nat_wf lelt_wf select_wf non_neg_length nat_properties length_wf_nat int_seg_properties intformand_wf itermConstant_wf int_formula_prop_and_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf squash_wf true_wf permute_list_select iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity natural_numberEquality hypothesis functionExtensionality applyEquality because_Cache sqequalRule lambdaEquality independent_isectElimination independent_pairFormation lambdaFormation isect_memberEquality voidElimination voidEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll setElimination rename axiomEquality dependent_set_memberEquality productElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f,g:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].    ((L  o  f  o  g)  =  ((L  o  f)  o  g))



Date html generated: 2017_04_17-AM-08_09_59
Last ObjectModification: 2017_02_27-PM-04_38_00

Theory : list_1


Home Index