Nuprl Lemma : set-equal-no_repeats-length
∀[T:Type]. ∀[as,bs:T List].
  (||as|| = ||bs|| ∈ ℤ) supposing (set-equal(T;as;bs) and no_repeats(T;bs) and no_repeats(T;as))
Proof
Definitions occuring in Statement : 
set-equal: set-equal(T;x;y), 
no_repeats: no_repeats(T;l), 
length: ||as||, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ
Lemmas referenced : 
no_repeats_wf, 
set-equal_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
l_contains-no_repeats-length, 
set-equal-l_contains
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].
    (||as||  =  ||bs||)  supposing  (set-equal(T;as;bs)  and  no\_repeats(T;bs)  and  no\_repeats(T;as))
Date html generated:
2016_05_14-PM-01_39_25
Last ObjectModification:
2016_01_15-AM-08_25_04
Theory : list_1
Home
Index