Nuprl Lemma : sublist_antisymmetry
∀[T:Type]. ∀[L1,L2:T List].  (L1 = L2 ∈ (T List)) supposing (L2 ⊆ L1 and L1 ⊆ L2)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
Lemmas referenced : 
proper_sublist_length, 
sublist_wf, 
list_wf, 
length_sublist, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  =  L2)  supposing  (L2  \msubseteq{}  L1  and  L1  \msubseteq{}  L2)
Date html generated:
2018_05_21-PM-00_33_14
Last ObjectModification:
2018_05_19-AM-06_42_52
Theory : list_1
Home
Index