Nuprl Lemma : sublist_tl2
∀[T:Type]. ∀u:T. ∀v,L1:T List.  (L1 ⊆ v 
⇒ L1 ⊆ [u / v])
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
not: ¬A
, 
top: Top
, 
false: False
Lemmas referenced : 
sublist_wf, 
list_wf, 
sublist_tl, 
cons_wf, 
assert_elim, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
assert_wf, 
reduce_tl_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}u:T.  \mforall{}v,L1:T  List.    (L1  \msubseteq{}  v  {}\mRightarrow{}  L1  \msubseteq{}  [u  /  v])
Date html generated:
2019_06_20-PM-01_22_45
Last ObjectModification:
2018_09_26-PM-05_23_28
Theory : list_1
Home
Index