Nuprl Lemma : sublist_tl2

[T:Type]. ∀u:T. ∀v,L1:T List.  (L1 ⊆  L1 ⊆ [u v])


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: uimplies: supposing a not: ¬A top: Top false: False
Lemmas referenced :  sublist_wf list_wf sublist_tl cons_wf assert_elim null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse assert_wf reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  universeEquality dependent_functionElimination independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}u:T.  \mforall{}v,L1:T  List.    (L1  \msubseteq{}  v  {}\mRightarrow{}  L1  \msubseteq{}  [u  /  v])



Date html generated: 2019_06_20-PM-01_22_45
Last ObjectModification: 2018_09_26-PM-05_23_28

Theory : list_1


Home Index