Nuprl Lemma : summand-le-l_sum

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  ∀x:{x:T| (x ∈ L)} (f[x] ≤ l_sum(map(f;L))) supposing ∀x:{x:T| (x ∈ L)} (0 ≤ f[x])


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) l_member: (x ∈ l) map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] squash: T prop: so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False sq_stable: SqStable(P) l_member: (x ∈ l) cand: c∧ B nat: ge: i ≥  label: ...$L... t sq_type: SQType(T)
Lemmas referenced :  le_wf squash_wf true_wf istype-int l_sum-sum subtype_rel_self iff_weakening_equal sq_stable__le l_member_wf sum_wf length_wf_nat select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma select_member int_seg_wf summand-le-sum nat_properties istype-le istype-less_than subtype_base_sq int_subtype_base equal_wf le_witness_for_triv list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate because_Cache independent_isectElimination productElimination independent_functionElimination setElimination rename dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination productIsType cumulativity intEquality equalityIstype setIsType functionIsTypeImplies functionIsType isect_memberEquality_alt isectIsTypeImplies universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (f[x]  \mleq{}  l\_sum(map(f;L)))  supposing  \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (0  \mleq{}  f[x])



Date html generated: 2020_05_19-PM-09_45_56
Last ObjectModification: 2020_01_23-PM-00_48_26

Theory : list_1


Home Index