Nuprl Lemma : summand-le-l_sum
∀[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  ∀x:{x:T| (x ∈ L)} . (f[x] ≤ l_sum(map(f;L))) supposing ∀x:{x:T| (x ∈ L)} . (0 ≤ f[x])
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
sq_stable: SqStable(P)
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
label: ...$L... t
, 
sq_type: SQType(T)
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf, 
istype-int, 
l_sum-sum, 
subtype_rel_self, 
iff_weakening_equal, 
sq_stable__le, 
l_member_wf, 
sum_wf, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member, 
int_seg_wf, 
summand-le-sum, 
nat_properties, 
istype-le, 
istype-less_than, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
le_witness_for_triv, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
productIsType, 
cumulativity, 
intEquality, 
equalityIstype, 
setIsType, 
functionIsTypeImplies, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (f[x]  \mleq{}  l\_sum(map(f;L)))  supposing  \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (0  \mleq{}  f[x])
Date html generated:
2020_05_19-PM-09_45_56
Last ObjectModification:
2020_01_23-PM-00_48_26
Theory : list_1
Home
Index