Nuprl Lemma : unshuffle-map'

[f:ℕ ⟶ Top]. ∀[m:ℕ]. ∀[r:ℕ2].  (unshuffle(map(f;upto((2 m) r))) map(λi.<(2 i), ((2 i) 1)>;upto(m)))


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) upto: upto(n) map: map(f;as) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> multiply: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} nat: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: nat_plus: + squash: T subtract: m subtype_rel: A ⊆B true: True le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  length_upto le_wf false_wf int_seg_subtype_nat subtype_rel_list unshuffle-odd-length nil_wf true_wf squash_wf cons_wf zero-add add-commutes add-swap add-associates upto_wf append_wf list_subtype_base list_wf less_than_wf int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf upto_decomp1 lelt_wf decidable__lt decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_properties set_subtype_base add-zero top_wf nat_wf int_seg_wf int_subtype_base subtype_base_sq decidable__equal_int unshuffle-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination setElimination rename natural_numberEquality unionElimination instantiate cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalAxiom isect_memberEquality functionEquality multiplyEquality productElimination dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry addEquality applyEquality imageElimination minusEquality imageMemberEquality baseClosed lambdaFormation

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[r:\mBbbN{}2].
    (unshuffle(map(f;upto((2  *  m)  +  r)))  \msim{}  map(\mlambda{}i.<f  (2  *  i),  f  ((2  *  i)  +  1)>upto(m)))



Date html generated: 2016_05_14-PM-03_17_40
Last ObjectModification: 2016_01_15-AM-07_11_02

Theory : list_1


Home Index