Nuprl Lemma : unshuffle-map'
∀[f:ℕ ⟶ Top]. ∀[m:ℕ]. ∀[r:ℕ2].  (unshuffle(map(f;upto((2 * m) + r))) ~ map(λi.<f (2 * i), f ((2 * i) + 1)>upto(m)))
Proof
Definitions occuring in Statement : 
unshuffle: unshuffle(L)
, 
upto: upto(n)
, 
map: map(f;as)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
true: True
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
length_upto, 
le_wf, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_list, 
unshuffle-odd-length, 
nil_wf, 
true_wf, 
squash_wf, 
cons_wf, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
upto_wf, 
append_wf, 
list_subtype_base, 
list_wf, 
less_than_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
upto_decomp1, 
lelt_wf, 
decidable__lt, 
decidable__le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
int_seg_properties, 
set_subtype_base, 
add-zero, 
top_wf, 
nat_wf, 
int_seg_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
unshuffle-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
sqequalAxiom, 
isect_memberEquality, 
functionEquality, 
multiplyEquality, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
imageElimination, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
lambdaFormation
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[r:\mBbbN{}2].
    (unshuffle(map(f;upto((2  *  m)  +  r)))  \msim{}  map(\mlambda{}i.<f  (2  *  i),  f  ((2  *  i)  +  1)>upto(m)))
Date html generated:
2016_05_14-PM-03_17_40
Last ObjectModification:
2016_01_15-AM-07_11_02
Theory : list_1
Home
Index