Nuprl Lemma : unshuffle-odd-length

[f:ℕ ⟶ Top]. ∀[m:ℕ]. ∀[L:ℕ List]. ∀[x:ℕ].
  unshuffle(map(f;L [x])) unshuffle(map(f;L)) supposing ||L|| (2 m) ∈ ℤ


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) length: ||as|| map: map(f;as) append: as bs cons: [a b] nil: [] list: List nat: uimplies: supposing a uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] multiply: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] unshuffle: unshuffle(L) lt_int: i <j ifthenelse: if then else fi  btrue: tt cons: [a b] le: A ≤ B assert: b bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt le_wf subtype_rel_self nat_wf list-cases list_ind_nil_lemma map_nil_lemma map_cons_lemma length_of_cons_lemma length_of_nil_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma reduce_tl_nil_lemma product_subtype_list list_ind_cons_lemma list_subtype_base list_wf lelt_wf itermAdd_wf int_term_value_add_lemma istype-top int_term_value_mul_lemma itermMultiply_wf satisfiable-full-omega-tt subtract_nat_wf non_neg_length length_wf length_wf_nat top_wf map_wf append_wf cons_wf nil_wf bool_wf bool_subtype_base iff_imp_equal_bool lt_int_wf bfalse_wf iff_functionality_wrt_iff assert_wf false_wf iff_weakening_uiff assert_of_lt_int iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality productElimination equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination applyEquality instantiate because_Cache applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption promote_hyp Error :equalityIsType4,  baseApply closedConclusion baseClosed intEquality addEquality Error :functionIsType,  computeAll lambdaEquality dependent_pairFormation voidEquality isect_memberEquality Error :equalityIsType1,  multiplyEquality cumulativity

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[L:\mBbbN{}  List].  \mforall{}[x:\mBbbN{}].
    unshuffle(map(f;L  @  [x]))  \msim{}  unshuffle(map(f;L))  supposing  ||L||  =  (2  *  m)



Date html generated: 2019_06_20-PM-01_47_47
Last ObjectModification: 2018_10_07-PM-00_28_20

Theory : list_1


Home Index