Nuprl Lemma : unshuffle-odd-length
∀[f:ℕ ⟶ Top]. ∀[m:ℕ]. ∀[L:ℕ List]. ∀[x:ℕ].
  unshuffle(map(f;L @ [x])) ~ unshuffle(map(f;L)) supposing ||L|| = (2 * m) ∈ ℤ
Proof
Definitions occuring in Statement : 
unshuffle: unshuffle(L)
, 
length: ||as||
, 
map: map(f;as)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
unshuffle: unshuffle(L)
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
le: A ≤ B
, 
assert: ↑b
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
le_wf, 
subtype_rel_self, 
nat_wf, 
list-cases, 
list_ind_nil_lemma, 
map_nil_lemma, 
map_cons_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
reduce_tl_nil_lemma, 
product_subtype_list, 
list_ind_cons_lemma, 
list_subtype_base, 
list_wf, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-top, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
satisfiable-full-omega-tt, 
subtract_nat_wf, 
non_neg_length, 
length_wf, 
length_wf_nat, 
top_wf, 
map_wf, 
append_wf, 
cons_wf, 
nil_wf, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
lt_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
promote_hyp, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
addEquality, 
Error :functionIsType, 
computeAll, 
lambdaEquality, 
dependent_pairFormation, 
voidEquality, 
isect_memberEquality, 
Error :equalityIsType1, 
multiplyEquality, 
cumulativity
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[L:\mBbbN{}  List].  \mforall{}[x:\mBbbN{}].
    unshuffle(map(f;L  @  [x]))  \msim{}  unshuffle(map(f;L))  supposing  ||L||  =  (2  *  m)
Date html generated:
2019_06_20-PM-01_47_47
Last ObjectModification:
2018_10_07-PM-00_28_20
Theory : list_1
Home
Index