Nuprl Lemma : zip-append
∀[A,B:Type]. ∀[xs1:A List]. ∀[ys1:B List]. ∀[xs2:A List]. ∀[ys2:B List].
  zip(xs1 @ xs2;ys1 @ ys2) ~ zip(xs1;ys1) @ zip(xs2;ys2) supposing ||xs1|| = ||ys1|| ∈ ℤ
Proof
Definitions occuring in Statement : 
zip: zip(as;bs)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal_wf, 
length_wf, 
list_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
equal-wf-base-T, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
zip_nil_lemma, 
equal-wf-base, 
product_subtype_list, 
spread_cons_lemma, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
length_of_cons_lemma, 
non_neg_length, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
cons_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
list_ind_cons_lemma, 
zip_cons_cons_lemma, 
add-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomSqEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
applyEquality, 
unionElimination, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
instantiate, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
imageElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[xs1:A  List].  \mforall{}[ys1:B  List].  \mforall{}[xs2:A  List].  \mforall{}[ys2:B  List].
    zip(xs1  @  xs2;ys1  @  ys2)  \msim{}  zip(xs1;ys1)  @  zip(xs2;ys2)  supposing  ||xs1||  =  ||ys1||
Date html generated:
2020_05_19-PM-09_49_38
Last ObjectModification:
2020_02_03-AM-11_43_46
Theory : list_1
Home
Index