Nuprl Lemma : zip_length
∀[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List].  ((||zip(as;bs)|| ≤ ||as||) ∧ (||zip(as;bs)|| ≤ ||bs||))
Proof
Definitions occuring in Statement : 
zip: zip(as;bs)
, 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
zip: zip(as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
guard: {T}
, 
uiff: uiff(P;Q)
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
le_wf, 
length_wf, 
zip_wf, 
less_than'_wf, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
false_wf, 
non_neg_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
cons_wf, 
list_ind_cons_lemma, 
length_of_cons_lemma, 
add_nat_wf, 
length_wf_nat, 
nat_wf, 
nat_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
productEquality, 
independent_functionElimination, 
lambdaFormation, 
rename, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
addEquality
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:T1  List].  \mforall{}[bs:T2  List].
    ((||zip(as;bs)||  \mleq{}  ||as||)  \mwedge{}  (||zip(as;bs)||  \mleq{}  ||bs||))
Date html generated:
2017_04_17-AM-08_54_36
Last ObjectModification:
2017_02_27-PM-05_11_08
Theory : list_1
Home
Index