Nuprl Lemma : zip_length

[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List].  ((||zip(as;bs)|| ≤ ||as||) ∧ (||zip(as;bs)|| ≤ ||bs||))


Proof




Definitions occuring in Statement :  zip: zip(as;bs) length: ||as|| list: List uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q all: x:A. B[x] le: A ≤ B not: ¬A false: False zip: zip(as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cand: c∧ B less_than': less_than'(a;b) ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nat: guard: {T} uiff: uiff(P;Q)
Lemmas referenced :  list_induction uall_wf list_wf le_wf length_wf zip_wf less_than'_wf list_ind_nil_lemma length_of_nil_lemma false_wf non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf cons_wf list_ind_cons_lemma length_of_cons_lemma add_nat_wf length_wf_nat nat_wf nat_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis productEquality independent_functionElimination lambdaFormation rename because_Cache dependent_functionElimination isect_memberEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality voidElimination voidEquality independent_pairFormation natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll dependent_set_memberEquality applyLambdaEquality setElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed addEquality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:T1  List].  \mforall{}[bs:T2  List].
    ((||zip(as;bs)||  \mleq{}  ||as||)  \mwedge{}  (||zip(as;bs)||  \mleq{}  ||bs||))



Date html generated: 2017_04_17-AM-08_54_36
Last ObjectModification: 2017_02_27-PM-05_11_08

Theory : list_1


Home Index