Nuprl Lemma : assert-pushdownC-test

a,b,c:ℤ.
  ((↑(((a =z c) ∧b c <b) ∧b b((a =z b) ∨b(b =z c)))))
   {(¬(a b ∈ ℤ)) ∧ ((b 2) c ∈ ℤ)) ∧ c < b ∧ (a c ∈ ℤ)})


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q bnot: ¬bb assert: b lt_int: i <j eq_int: (i =z j) less_than: a < b guard: {T} all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q or: P ∨ Q true: True member: t ∈ T prop: uall: [x:A]. B[x] exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} band: p ∧b q ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q top: Top bnot: ¬bb assert: b bfalse: ff false: False bor: p ∨bq cand: c∧ B nequal: a ≠ b ∈ 
Lemmas referenced :  true_wf eq_int_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqtt_to_assert assert_of_eq_int lt_int_wf bool_wf assert_of_lt_int testxxx_lemma istype-void eqff_to_assert assert-bnot neg_assert_of_eq_int istype-assert bool_cases band_wf btrue_wf bfalse_wf bnot_wf bor_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut Error :inlFormation_alt,  natural_numberEquality Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution hypothesis unionElimination thin isectElimination hypothesisEquality Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIstype,  Error :inhabitedIsType,  productElimination promote_hyp dependent_functionElimination instantiate because_Cache independent_isectElimination independent_functionElimination sqequalRule cumulativity Error :isect_memberEquality_alt,  voidElimination addEquality independent_pairFormation

Latex:
\mforall{}a,b,c:\mBbbZ{}.
    ((\muparrow{}(((a  =\msubz{}  c)  \mwedge{}\msubb{}  c  <z  b)  \mwedge{}\msubb{}  (\mneg{}\msubb{}((a  =\msubz{}  b)  \mvee{}\msubb{}(b  +  2  =\msubz{}  c)))))
    {}\mRightarrow{}  \{(\mneg{}(a  =  b))  \mwedge{}  (\mneg{}((b  +  2)  =  c))  \mwedge{}  c  <  b  \mwedge{}  (a  =  c)\})



Date html generated: 2019_06_20-PM-02_25_27
Last ObjectModification: 2019_01_22-AM-08_31_16

Theory : num_thy_1


Home Index