Nuprl Lemma : const_nondecreasing
∀[k:ℕ]. ∀[x:ℤ].  nondecreasing(λi.x;k)
Proof
Definitions occuring in Statement : 
nondecreasing: nondecreasing(f;k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
int: ℤ
Definitions unfolded in proof : 
nondecreasing: nondecreasing(f;k)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
Lemmas referenced : 
int_seg_properties, 
subtract_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
less_than'_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].    nondecreasing(\mlambda{}i.x;k)
Date html generated:
2018_05_21-PM-01_00_01
Last ObjectModification:
2018_05_19-AM-06_36_25
Theory : num_thy_1
Home
Index