Nuprl Lemma : div_nat_induction

b:{b:ℤ1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0]  (∀i:ℕ+(P[i ÷ b]  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  not: ¬A false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) true: True subtract: m int_seg: {i..j-} lelt: i ≤ j < k sq_stable: SqStable(P) squash: T
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf set-value-type equal_wf int-value-type int_seg_wf int_seg_subtype_nat istype-false istype-nat natrec_wf nat_wf subtype_rel_function all_wf subtype_rel_self nat_plus_wf divide_wf nat_plus_subtype_nat decidable__lt not-lt-2 less-iff-le add_functionality_wrt_le add-swap add-commutes add-associates zero-add le-add-cancel less_than_wf intformnot_wf int_formula_prop_not_lemma le_wf not-equal-2 add-zero condition-implies-le minus-add minus-zero div_bounds_1 div_mono1 subtype_rel_sets sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination divideEquality hypothesisEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality cutEval Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  Error :inhabitedIsType,  Error :functionIsType,  functionExtensionality productElimination addEquality universeEquality Error :setIsType,  minusEquality imageMemberEquality imageElimination Error :productIsType

Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2019_06_20-PM-02_33_13
Last ObjectModification: 2019_03_19-AM-10_48_31

Theory : num_thy_1


Home Index