Nuprl Lemma : div_nat_induction
∀b:{b:ℤ| 1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0]
⇒ (∀i:ℕ+. (P[i ÷ b]
⇒ P[i]))
⇒ (∀i:ℕ. P[i]))
Proof
Definitions occuring in Statement :
nat_plus: ℕ+
,
nat: ℕ
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
divide: n ÷ m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
nat_plus: ℕ+
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
true: True
,
subtract: n - m
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
sq_stable: SqStable(P)
,
squash: ↓T
Lemmas referenced :
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
nat_properties,
full-omega-unsat,
intformand_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
set-value-type,
equal_wf,
int-value-type,
int_seg_wf,
int_seg_subtype_nat,
istype-false,
istype-nat,
natrec_wf,
nat_wf,
subtype_rel_function,
all_wf,
subtype_rel_self,
nat_plus_wf,
divide_wf,
nat_plus_subtype_nat,
decidable__lt,
not-lt-2,
less-iff-le,
add_functionality_wrt_le,
add-swap,
add-commutes,
add-associates,
zero-add,
le-add-cancel,
less_than_wf,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
not-equal-2,
add-zero,
condition-implies-le,
minus-add,
minus-zero,
div_bounds_1,
div_mono1,
subtype_rel_sets,
sq_stable__less_than,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :lambdaFormation_alt,
Error :isect_memberFormation_alt,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
setElimination,
rename,
because_Cache,
hypothesis,
natural_numberEquality,
unionElimination,
instantiate,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
independent_functionElimination,
divideEquality,
hypothesisEquality,
approximateComputation,
Error :dependent_pairFormation_alt,
Error :lambdaEquality_alt,
int_eqEquality,
Error :isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
Error :universeIsType,
Error :equalityIsType4,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
cutEval,
Error :dependent_set_memberEquality_alt,
equalityTransitivity,
equalitySymmetry,
Error :equalityIsType1,
Error :inhabitedIsType,
Error :functionIsType,
functionExtensionality,
productElimination,
addEquality,
universeEquality,
Error :setIsType,
minusEquality,
imageMemberEquality,
imageElimination,
Error :productIsType
Latex:
\mforall{}b:\{b:\mBbbZ{}| 1 < b\} . \mforall{}[P:\mBbbN{} {}\mrightarrow{} \mBbbP{}]. (P[0] {}\mRightarrow{} (\mforall{}i:\mBbbN{}\msupplus{}. (P[i \mdiv{} b] {}\mRightarrow{} P[i])) {}\mRightarrow{} (\mforall{}i:\mBbbN{}. P[i]))
Date html generated:
2019_06_20-PM-02_33_13
Last ObjectModification:
2019_03_19-AM-10_48_31
Theory : num_thy_1
Home
Index