Nuprl Lemma : exp-assoced-one

x:ℤ. ∀n:ℕ+.  ((x^n 1)  (x 1))


Proof




Definitions occuring in Statement :  assoced: b exp: i^n nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] exp: i^n uall: [x:A]. B[x] member: t ∈ T nat_plus: + top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nat: decidable: Dec(P)
Lemmas referenced :  primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int nat_plus_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf assoced_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf exp_wf2 nat_plus_wf mul-assoced-one subtract_wf decidable__le intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality because_Cache natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation promote_hyp instantiate cumulativity multiplyEquality dependent_set_memberEquality

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((x\^{}n  \msim{}  1)  {}\mRightarrow{}  (x  \msim{}  1))



Date html generated: 2018_05_21-PM-01_06_04
Last ObjectModification: 2018_05_19-AM-06_38_55

Theory : num_thy_1


Home Index