Nuprl Lemma : exp_difference_factor

[n:ℕ+]. ∀[x,y:ℤ].  ((x^n y^n) (x^n y^i i < n) (x y)) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n sum: Σ(f[x] x < k) nat_plus: + uall: [x:A]. B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: nat_plus: + int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q subtract: m sq_type: SQType(T) uiff: uiff(P;Q)
Lemmas referenced :  equal_wf squash_wf true_wf subtract_wf exp_wf2 nat_plus_subtype_nat left_mul_subtract_distrib sum_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf itermAdd_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_seg_subtype_nat false_wf int_seg_wf iff_weakening_equal nat_plus_wf mul_com sum_scalar_mult subtype_base_sq int_subtype_base mul_assoc exp_step decidable__lt less_than_wf minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add-associates itermMinus_wf int_term_value_minus_lemma mul-swap not-lt-2 condition-implies-le zero-add add_functionality_wrt_le add-zero le-add-cancel add-subtract-cancel subtract-add-cancel sum_split1 sum_split_first minus-zero exp0_lemma decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma minus-minus add-mul-special zero-mul subtract-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache sqequalRule multiplyEquality dependent_set_memberEquality setElimination rename addEquality natural_numberEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation imageMemberEquality baseClosed independent_functionElimination axiomEquality instantiate cumulativity minusEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}].    ((x\^{}n  -  y\^{}n)  =  (\mSigma{}(x\^{}n  -  i  +  1  *  y\^{}i  |  i  <  n)  *  (x  -  y)))



Date html generated: 2017_04_17-AM-09_45_23
Last ObjectModification: 2017_02_27-PM-05_40_27

Theory : num_thy_1


Home Index