Nuprl Lemma : exp_difference_factor
∀[n:ℕ+]. ∀[x,y:ℤ].  ((x^n - y^n) = (Σ(x^n - i + 1 * y^i | i < n) * (x - y)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
sum: Σ(f[x] | x < k)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
subtract_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
left_mul_subtract_distrib, 
sum_wf, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
iff_weakening_equal, 
nat_plus_wf, 
mul_com, 
sum_scalar_mult, 
subtype_base_sq, 
int_subtype_base, 
mul_assoc, 
exp_step, 
decidable__lt, 
less_than_wf, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-associates, 
itermMinus_wf, 
int_term_value_minus_lemma, 
mul-swap, 
not-lt-2, 
condition-implies-le, 
zero-add, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
add-subtract-cancel, 
subtract-add-cancel, 
sum_split1, 
sum_split_first, 
minus-zero, 
exp0_lemma, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
minus-minus, 
add-mul-special, 
zero-mul, 
subtract-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
sqequalRule, 
multiplyEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
axiomEquality, 
instantiate, 
cumulativity, 
minusEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}].    ((x\^{}n  -  y\^{}n)  =  (\mSigma{}(x\^{}n  -  i  +  1  *  y\^{}i  |  i  <  n)  *  (x  -  y)))
Date html generated:
2017_04_17-AM-09_45_23
Last ObjectModification:
2017_02_27-PM-05_40_27
Theory : num_thy_1
Home
Index