Nuprl Lemma : integer-sqrt
∀x:ℕ. (∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
sq_exists: ∃x:A [B[x]]
, 
exp: i^n
, 
top: Top
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
integer-nth-root, 
less_than_wf, 
and_wf, 
le_wf, 
primrec-unroll, 
primrec1_lemma, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
productEquality, 
multiplyEquality, 
addEquality
Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)  *  (r  +  1))])
Date html generated:
2019_06_20-PM-02_35_27
Last ObjectModification:
2019_06_12-PM-00_24_47
Theory : num_thy_1
Home
Index