Nuprl Lemma : integer-nth-root

n:ℕ+. ∀x:ℕ.  (∃r:ℕ [((r^n ≤ x) ∧ x < (r 1)^n)])


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: less_than: a < b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q add: m natural_number: $n
Definitions unfolded in proof :  uiff: uiff(P;Q) sq_type: SQType(T) sq_stable: SqStable(P) le: A ≤ B less_than': less_than'(a;b) cand: c∧ B true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b nequal: a ≠ b ∈  int_nzero: -o subtype_rel: A ⊆B sq_exists: x:A [B[x]] ge: i ≥  guard: {T} squash: T int_upper: {i...} and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat_plus: + nat: so_apply: x[s] prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  subtype_rel_sets set_subtype_base mul_preserves_le false_wf multiply-is-int-iff add-is-int-iff decidable__equal_int subtype_base_sq int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf sq_stable__less_than exp-fastexp fastexp_wf decidable__lt rem_bounds_1 div_rem_sum nat_plus_subtype_nat exp-of-mul istype-false squash_wf true_wf exp-zero subtype_rel_self iff_weakening_equal exp-positive nat_plus_wf int_subtype_base int_formula_prop_eq_lemma intformeq_wf nequal_wf subtype_rel_sets_simple divide_wfa istype-nat nat_properties le_wf nat_wf sq_exists_wf div_nat_induction int-value-type equal_wf set-value-type istype-less_than exp-ge-1 istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties exp_wf2 istype-int less_than_wf set_wf
Rules used in proof :  divideEquality Error :equalityIsType4,  setEquality closedConclusion baseApply promote_hyp pointwiseFunctionality cumulativity multiplyEquality Error :dependent_set_memberFormation_alt,  instantiate universeEquality productElimination sqequalBase applyEquality Error :productIsType,  Error :setIsType,  addEquality because_Cache imageElimination baseClosed imageMemberEquality applyLambdaEquality productEquality Error :inhabitedIsType,  Error :equalityIstype,  equalitySymmetry equalityTransitivity cutEval Error :universeIsType,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination rename setElimination Error :dependent_set_memberEquality_alt,  hypothesis hypothesisEquality natural_numberEquality Error :lambdaEquality_alt,  sqequalRule intEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}.    (\mexists{}r:\mBbbN{}  [((r\^{}n  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)\^{}n)])



Date html generated: 2019_06_20-PM-02_33_36
Last ObjectModification: 2019_06_19-AM-11_28_46

Theory : num_thy_1


Home Index