Nuprl Lemma : exp-ge-1

[b:{2...}]. ∀[j:ℕ+].  1 < b^j


Proof




Definitions occuring in Statement :  exp: i^n int_upper: {i...} nat_plus: + less_than: a < b uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + implies:  Q prop: nat: guard: {T} int_upper: {i...} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) true: True squash: T sq_type: SQType(T) subtract: m less_than: a < b
Lemmas referenced :  nat_plus_properties less_than_wf exp_wf2 int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf primrec-wf-nat-plus nat_plus_wf member-less_than nat_plus_subtype_nat int_upper_wf subtype_base_sq set_subtype_base int_subtype_base decidable__lt false_wf exp_wf_nat_plus not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel equal_wf squash_wf true_wf exp1 iff_weakening_equal exp_step less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero add-subtract-cancel mul_preserves_lt itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination natural_numberEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache applyEquality instantiate cumulativity productElimination independent_functionElimination equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination universeEquality imageMemberEquality baseClosed addEquality minusEquality multiplyEquality

Latex:
\mforall{}[b:\{2...\}].  \mforall{}[j:\mBbbN{}\msupplus{}].    1  <  b\^{}j



Date html generated: 2017_04_14-AM-09_22_31
Last ObjectModification: 2017_02_27-PM-03_58_00

Theory : int_2


Home Index