Nuprl Lemma : same-parity-implies
∀[n,m:ℤ].  ((↑same-parity(n;m)) ⇒ {(¬↑same-parity(n;m - 1)) ∧ (¬↑same-parity(n;m + 1))})
Proof
Definitions occuring in Statement : 
same-parity: same-parity(n;m), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
and: P ∧ Q, 
same-parity: same-parity(n;m), 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
or: P ∨ Q, 
sq_type: SQType(T), 
bfalse: ff, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
isEven_wf, 
bool_wf, 
eqtt_to_assert, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqff_to_assert, 
assert_of_bnot, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
equal_wf, 
same-parity_wf, 
subtract_wf, 
even-implies, 
odd-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
lambdaEquality, 
independent_pairEquality, 
natural_numberEquality, 
addEquality, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    ((\muparrow{}same-parity(n;m))  {}\mRightarrow{}  \{(\mneg{}\muparrow{}same-parity(n;m  -  1))  \mwedge{}  (\mneg{}\muparrow{}same-parity(n;m  +  1))\})
Date html generated:
2017_04_17-AM-09_43_28
Last ObjectModification:
2017_02_27-PM-05_38_22
Theory : num_thy_1
Home
Index