Nuprl Lemma : length-shadow-vec
∀[as,bs:ℤ List]. ∀[i:ℕ||as||].  ||shadow-vec(i;as;bs)|| = (||as|| - 1) ∈ ℤ supposing ||as|| = ||bs|| ∈ ℤ
Proof
Definitions occuring in Statement : 
shadow-vec: shadow-vec(i;as;bs)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
shadow-vec: shadow-vec(i;as;bs)
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
has-value: (a)↓
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
evalall-reduce, 
int-vec-mul_wf, 
select_wf, 
sq_stable__le, 
list-valueall-type, 
int-valueall-type, 
value-type-has-value, 
list_wf, 
list-value-type, 
less_than_transitivity1, 
length_wf, 
le_weakening, 
int-vec-add_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
int_seg_wf, 
list-delete_wf, 
equal_wf, 
squash_wf, 
true_wf, 
length-list-delete, 
int_seg_subtype_nat, 
false_wf, 
less_than_wf, 
length-int-vec-mul, 
length-int-vec-add, 
iff_weakening_equal, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
intEquality, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
callbyvalueReduce, 
minusEquality, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
universeEquality, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
voidEquality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    ||shadow-vec(i;as;bs)||  =  (||as||  -  1)  supposing  ||as||  =  ||bs||
Date html generated:
2017_04_14-AM-08_56_14
Last ObjectModification:
2017_02_27-PM-03_39_47
Theory : omega
Home
Index