Nuprl Lemma : length-shadow-vec

[as,bs:ℤ List]. ∀[i:ℕ||as||].  ||shadow-vec(i;as;bs)|| (||as|| 1) ∈ ℤ supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  shadow-vec: shadow-vec(i;as;bs) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a shadow-vec: shadow-vec(i;as;bs) int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T has-value: (a)↓ guard: {T} all: x:A. B[x] prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A top: Top iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  evalall-reduce int-vec-mul_wf select_wf sq_stable__le list-valueall-type int-valueall-type value-type-has-value list_wf list-value-type less_than_transitivity1 length_wf le_weakening int-vec-add_wf equal-wf-base list_subtype_base int_subtype_base int_seg_wf list-delete_wf equal_wf squash_wf true_wf length-list-delete int_seg_subtype_nat false_wf less_than_wf length-int-vec-mul length-int-vec-add iff_weakening_equal subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache intEquality hypothesisEquality setElimination rename hypothesis independent_isectElimination natural_numberEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination callbyvalueReduce minusEquality dependent_functionElimination baseApply closedConclusion applyEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality universeEquality independent_pairFormation lambdaFormation voidElimination voidEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    ||shadow-vec(i;as;bs)||  =  (||as||  -  1)  supposing  ||as||  =  ||bs||



Date html generated: 2017_04_14-AM-08_56_14
Last ObjectModification: 2017_02_27-PM-03_39_47

Theory : omega


Home Index