Nuprl Lemma : negate-poly-constraints_wf

[Xs:polynomial-constraints() List]. (negate-poly-constraints(Xs) ∈ polynomial-constraints() List)


Proof




Definitions occuring in Statement :  negate-poly-constraints: negate-poly-constraints(Xs) polynomial-constraints: polynomial-constraints() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T negate-poly-constraints: negate-poly-constraints(Xs) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B polynomial-constraints: polynomial-constraints() so_lambda: λ2x.t[x] so_apply: x[s] bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q false: False or: P ∨ Q nil: [] cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  null_wf polynomial-constraints_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf list_wf eqtt_to_assert assert_of_null cons_wf nil_wf subtype_rel_product iPolynomial_wf subtype_rel_list iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot list-cases it_wf unit_wf2 equal_wf product_subtype_list list_accum_wf negate-poly-constraint_wf and-poly-constraints_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination because_Cache productElimination independent_isectElimination independent_pairEquality voidEquality applyEquality lambdaEquality voidElimination independent_pairFormation impliesFunctionality dependent_functionElimination promote_hyp hypothesis_subsumption axiomEquality

Latex:
\mforall{}[Xs:polynomial-constraints()  List].  (negate-poly-constraints(Xs)  \mmember{}  polynomial-constraints()  List)



Date html generated: 2017_04_14-AM-09_02_58
Last ObjectModification: 2017_02_27-PM-03_43_38

Theory : omega


Home Index