Nuprl Lemma : negate-poly-constraints_wf
∀[Xs:polynomial-constraints() List]. (negate-poly-constraints(Xs) ∈ polynomial-constraints() List)
Proof
Definitions occuring in Statement : 
negate-poly-constraints: negate-poly-constraints(Xs), 
polynomial-constraints: polynomial-constraints(), 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
negate-poly-constraints: negate-poly-constraints(Xs), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
subtype_rel: A ⊆r B, 
polynomial-constraints: polynomial-constraints(), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
false: False, 
or: P ∨ Q, 
nil: [], 
cons: [a / b], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
null_wf, 
polynomial-constraints_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
list_wf, 
eqtt_to_assert, 
assert_of_null, 
cons_wf, 
nil_wf, 
subtype_rel_product, 
iPolynomial_wf, 
subtype_rel_list, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
list-cases, 
it_wf, 
unit_wf2, 
equal_wf, 
product_subtype_list, 
list_accum_wf, 
negate-poly-constraint_wf, 
and-poly-constraints_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
independent_pairEquality, 
voidEquality, 
applyEquality, 
lambdaEquality, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
axiomEquality
Latex:
\mforall{}[Xs:polynomial-constraints()  List].  (negate-poly-constraints(Xs)  \mmember{}  polynomial-constraints()  List)
Date html generated:
2017_04_14-AM-09_02_58
Last ObjectModification:
2017_02_27-PM-03_43_38
Theory : omega
Home
Index