Nuprl Lemma : prec-sub_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[j:P]. ∀[x:prec(lbl,p.a[lbl;p];j)]. ∀[i:P].
∀[y:prec(lbl,p.a[lbl;p];i)].
  (prec-sub(P;lbl,p.a[lbl;p];j;x;i;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
prec-sub: prec-sub(P;lbl,p.a[lbl; p];j;x;i;y)
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prec-sub: prec-sub(P;lbl,p.a[lbl; p];j;x;i;y)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
let: let, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
dest-prec_wf, 
istype-atom, 
int_seg_wf, 
length_wf, 
select-tuple_wf, 
map_wf, 
prec_wf, 
list_wf, 
int_seg_subtype_nat, 
istype-false, 
map-length, 
istype-void, 
int_seg_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
select-map, 
subtype_rel_list, 
top_wf, 
assert_wf, 
or_wf, 
equal_wf, 
select_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
true_wf, 
bfalse_wf, 
btrue_wf, 
btrue_neq_bfalse, 
l_member_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
hypothesis, 
Error :lambdaFormation_alt, 
productElimination, 
setElimination, 
rename, 
productEquality, 
natural_numberEquality, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
Error :unionIsType, 
independent_isectElimination, 
independent_pairFormation, 
imageElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :universeIsType, 
because_Cache, 
applyLambdaEquality, 
Error :inlEquality_alt, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
Error :inrEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :functionIsType
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[j:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];j)].  \mforall{}[i:P].
\mforall{}[y:prec(lbl,p.a[lbl;p];i)].
    (prec-sub(P;lbl,p.a[lbl;p];j;x;i;y)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_05_38
Last ObjectModification:
2019_02_22-PM-07_07_59
Theory : tuples
Home
Index