Nuprl Lemma : bag-count-sqequal
∀[T:Type]. ∀[bs:bag(T)]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((#x in bs) ~ #([y∈bs|eq x y]))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs), 
bag-size: #(bs), 
bag-filter: [x∈b|p[x]], 
bag: bag(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
apply: f a, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
exists: ∃x:A. B[x], 
bag-filter: [x∈b|p[x]], 
bag-size: #(bs), 
bag-count: (#x in bs), 
deq: EqDecider(T), 
subtype_rel: A ⊆r B, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
sq_type: SQType(T), 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bag_to_squash_list, 
count-length-filter, 
non_neg_length, 
filter_wf5, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
filter_functionality, 
eta_conv, 
bool_wf, 
equal_wf, 
bag-count_wf, 
bag-size_wf, 
assert_wf, 
bag-filter_wf, 
deq_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
imageElimination, 
productElimination, 
promote_hyp, 
rename, 
applyEquality, 
setElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
setEquality, 
equalityTransitivity, 
independent_functionElimination, 
sqequalAxiom, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((\#x  in  bs)  \msim{}  \#([y\mmember{}bs|eq  x  y]))
Date html generated:
2016_10_25-AM-11_25_17
Last ObjectModification:
2016_07_12-AM-07_29_33
Theory : bags_2
Home
Index