Nuprl Lemma : bag-summation-constant-int
∀[T:Type]. ∀[a:ℤ]. ∀[bs:bag(T)].  (Σ(x∈bs). a = (#(bs) * a) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x], 
bag-size: #(bs), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
integ_dom: IntegDom{i}, 
crng: CRng, 
all: ∀x:A. B[x], 
int_ring: ℤ-rng, 
rng_car: |r|, 
pi1: fst(t), 
prop: ℙ, 
squash: ↓T, 
rng: Rng, 
nat: ℕ, 
true: True, 
and: P ∧ Q, 
uimplies: b supposing a, 
cand: A c∧ B, 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
so_lambda: λ2x.t[x], 
assoc: Assoc(T;op), 
infix_ap: x f y, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
comm: Comm(T;op), 
so_apply: x[s]
Lemmas referenced : 
bag-summation-constant, 
int_ring_wf, 
integ_dom_wf, 
bag_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_nat_op-int, 
bag-size_wf, 
nat_wf, 
bag-summation_wf, 
assoc_wf, 
comm_wf, 
rng_zero_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
multiplyEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
productEquality, 
functionExtensionality, 
functionEquality, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[a:\mBbbZ{}].  \mforall{}[bs:bag(T)].    (\mSigma{}(x\mmember{}bs).  a  =  (\#(bs)  *  a))
Date html generated:
2016_10_25-AM-11_27_53
Last ObjectModification:
2016_07_12-AM-07_34_37
Theory : bags_2
Home
Index