Nuprl Lemma : is-list-approx_wf
∀T:Type. ∀j:ℕ.  (is-list-approx(j) ∈ colist(T) ⟶ partial(𝔹))
Proof
Definitions occuring in Statement : 
is-list-approx: is-list-approx(j), 
colist: colist(T), 
partial: partial(T), 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
is-list-approx: is-list-approx(j), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
decidable: Dec(P), 
or: P ∨ Q, 
nat_plus: ℕ+
Lemmas referenced : 
nat_wf, 
is-list-fun_wf, 
fun_exp_unroll_1, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
unit_wf2, 
union-value-type, 
bool_wf, 
colist_wf, 
bottom_wf_function, 
fun_exp0_lemma, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
introduction, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
because_Cache, 
unionElimination, 
dependent_set_memberEquality, 
applyEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}j:\mBbbN{}.    (is-list-approx(j)  \mmember{}  colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))
 Date html generated: 
2016_05_15-PM-10_09_51
 Last ObjectModification: 
2016_01_11-PM-06_09_24
Theory : eval!all
Home
Index